Effects of buffer insertion on the average/peak power ratio in CMOS VLSI digital circuits

نویسندگان

  • Antonio J. Acosta
  • José M. Mora
  • Javier Castro
  • Pilar Parra
چکیده

The buffer insertion has been a mechanism widely used to increase the performances of advanced VLSI digital circuits and systems. The driver or repeater used to this purpose has effect on the timing characteristics on the signal on the wire, as propagation delay, signal integrity, transition time, among others. The power concerns related to buffering have also received much attention, because of the low power requirements of modern integrated systems. In the same way, the buffer insertion has strong impact on the reliability of synchronous systems, since the suited distribution of clock requires reduced or controlled clock-skew, being the buffer and wire sizing, a crucial aspect. In a different way, buffer insertion has been also used to reduce noise generation, especially in heavily loaded nets, since the inclusion of buffers help to desynchronize signal transitions. However, the inclusion of buffers of inverters to improve one or more of these characteristics have often negative effect on another parameters, as it happens in the average and peak of supply current. Mainly, the inclusion of a buffer to reduce noise (peak power), via desynchronizing transitions, could introduce more dynamic consumption, but reducing the short-circuit current because of the increment of signal slope. Thus, the average/peak current optimization can be considered a design trade-off. In this paper, the mechanism to obtain an average/peak power optimization procedure are presented. Selected examples show the feasibility of minimizing switching noise with negligible impact on average power consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk Delay Analysis in Very Deep Submicron VLSI Circuits

The evolution of Integrated Circuit designing has been a real game changer in the field of VLSI system in the past quarter century. Very deep sub-micron (VDSM) technologies embracing sub-100nm wafer design technologies, to take advantage of the superior integration possibilities. At these technologies, many phenomena affect gate, path delay or wire delays. Now a days, crosstalk noise or crossta...

متن کامل

A Novel Low Power High Dynamic Threshold Swing Limited Repeater Insertion for On-chip Interconnects

In Very Large Scale Integration (VLSI), interconnect design has become a supreme issue in high speed ICs. With the decreased feature size of CMOS circuits, on-chip interconnect now dominates both circuit delay and power consumption. An eminent technique known as repeater/buffer insertion is used in long interconnections to reduce delay in VLSI circuits. This paper deals with some distinct low p...

متن کامل

A Survey of Power Management in Embedded System Using Transistor Sizing

This paper describes a transistor sizing methodology for both analog and digital CMOS circuits. Various techniques are used for power optimization in CMOS VLSI circuits. Transistor sizing is one of the important techniques for the determination of circuit performance. The aim of the power optimization is to minimize the power and power-delay product or the energy consumption of the circuit. Thu...

متن کامل

Switched-Capacitor Dynamic Threshold PMOS (SC-DTPMOS) Transistor for High Speed Sub-threshold Applications

This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of ...

متن کامل

A Particle Swarm Optimization Approach for Low Power Very Large Scale Integration Routing

This study deals with the particle swarm optimization approach for optimal power dissipation in VLSI interconnect driven routing technique. Interconnect power dissipation is a major challenging research problem in Deep Submicron (DSM) regime that affects the overall circuit performance. The Buffer Insertion Buffer Sizing and Wire Sizing (BISWS) is considered for minimizing the power dissipation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007